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Anticommutator analogues of certain identities involving 
repeated commutators 
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Abstract. The generalisation of the Baker-Hausdorff lemma and its anticommutator 
analogue is formulated. Additionally, the anticommutator analogues of several well known 
operator identities involving repeated commutators are derived. It is pointed out that these 
are more convenient for application whenever the operators in question satisfy simpler 
repeated anticommutator relations (and, in particular, when they anticommute) than the 
repeated commutator relations. Diagonalisation of two spin-1 Hamiltonians, in which the 
anticommutator analogue of the Baker-Hausdorf7 lemma is used to good advantage, is 
presented. 

1. Introduction 

Certain identities, like the Baker-Hausdorff lemma [l], (also known as the Lie series 
[2]), the Campbell-Baker-Hausdorff ( CBH) formula [3] and similar have found diverse 
applications in classical [4-61 and quantum [7-111 physics. In the classical context 
these identities inolve the Poisson brackets?, while in quantum physics the commutators 
appear instead$. This is, of course, because the identities in question are based only 
on the general algebraic properties which are the same for both the Poisson brackets 
and the quantum mechanical commutators (these being only two different realisations 
of the Lie product). Now, in quantum mechanics along with the commutators the 
anticommutators appear, in many cases, on an equal footing. These, however, have 
no classical analogues, and have different algebraic properties (in particular the 
anticommutators do not satisfy the Jacobi identity); therefore the above-mentioned 
identities do not apply to them. Having in mind the similar role played in quantum 
mechanics by the commutators and anticommutators in certain cases, it is legitimate 
to ask what analogous identities the anticommutators do satisfy (if any). This question 
has received little attention in the physics literature. Recently we showed [12] that 
the Baker-Hausdorff lemma has a closely related anticommutator analogue, and that 
this new identity can, in certain cases, be more convenient for application. In this 
paper we attempt a more systematic study of this problem and as a result derive the 

t More precisely, they involve the differential operator 

acting on a phase space function B = B ( q ,  p )  giving the Poisson bracket { A ,  B}. 
$ Again, more precisely, the commutator superoperator A _  appears, acting on an operator B giving the 
commutator [A, E ] ;  see section 2 below. 
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anticommutator analogues of several operator identities involving repeated commu- 
tators. The treatment presented also shows that certain identities, like the Kubo identity 
and the CBH formula, do not possess direct anticommutator analogues. 

In section 2 we summarise certain results pertaining to the repeated (anti)commu- 
tators. These are used to derive the anticommutator analogues of some well known 
identities involving repeated commutators. In section 3, exact diagonalisation of two 
spin-1 Hamiltonians, with the help of the anticommutator analogue of the Baker- 
Hausdorfl lemma, is presented. 

2. Theory 

Firstly, we summarise some useful results pertaining to the repeated (anti)commutators. 
These we define by the successive application of the linear (anti)commutator super- 
operator A, (a  caret is used to denote a superoperator) as follows: 

& B =  B (1) 

&B = a , B  = [A, B ] ,  = AB * BA ( 2 )  

A:B = A*(A;-'B) n = 2 , 3 , .  . . . (3) 

Here, A and B denote two operators. Explicitly, for n 3 0, we have [ 2 ]  

Also of some interest is the relation expressing a repeated commutator in terms of 
repeated anticommutators and vice versa 

Both (4) and (5) are easily proved by induction. 

for ks n, we have trivially 
Repeated (anti)commutators have a number of useful properties. To begin with, 

A:B = A:(A:ykB).  ( 6 )  

FA:B = A.:(FB) (7) 

( A : B ) F = A : ( B F ) = A : B E  (8) 

Also 

Here, F = F(A)  denotes a function of the operator A. Equation (8) shows, for example, 
that the last bracket in (5) can be dropped. Hereafter we shall use this property freely 
to simplify the notation. More generally, we have ( m  = 1,2,3, .  . . ) 

F,m(A:B) = A:(P,mB) = A:F,mg 

A:(@+ y C  +. . . ) = P k B +  y A : c  +. . . 

(9) 
with U = + or (+ = - .  The proofs of (7)-(9)  are all based on (4). 

Linearity 

(10) 
is also obvious from (4). 
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If an ordinary function is defined by the series expansion 

f ( x ) = C  c,xn 
n 

then it is convenient to define a set ( k  = 0, 1,2, . . , ) of the corresponding (anti)commu- 
tator superoperator functions via 

Here, terms with n + k - 1 < 0 (if any) are dropped by convention. The most important 
is the set of the exponential functions (kJeA* . These functions are closely related 

(13) 

(14) 

meA= = 1 +A* meA* 

( k l  e A,= A : - I  A c l JeAl  = ( 1 )  A - A k - 1  e *  

with k = 2 , 3 , .  , . . The validity of (14) is obvious from (12) and (6). 
We have, more generally, for k = 1,2 , .  . . 

(15) 

(where the first two equalities repeat (14), and the last equality is proved below). Also 

(16) 

c k J e A * g  = A:-1 ( l ) e A = ~  = l l ) e A = A : - l ~  = A k - 1  * ( 1 )  e 2, ~ e * ' ~  

A A  (IJeA.A:-I = AL-IA:- /  11) e A, 

which, for 1 = 1, reduces to 
11) A - A k - 1  = A k - I  ( 1 )  A, e *  + e  

so that ( lJeA- and 
the last equality in (15). 

m = n - k and making the rearrangement for double summation, we get 

also commute (cf (14)). Equation (17) is to be compared with 

Firstly, we prove the k = 1 case of (15). With the help of (12) and (5), introducing 

Defining 1 = n - m, the sum in the bracket gives (k2)"A" e*2A and we get 
l l l e A l g  = l l J e A , ~  e*2A 

completing the proof of (15) for the k = 1 case. Applying &-' and using (14) we 
prove the validity of (15) for any k. 

Next, we give a simple proof of (16) based on (14) 
( r l e A , ( A r - f B )  =&-I  clleAi.&-fB, 

- - AL-1Ak-f ( 1 )  e .  A T B  

In the last step we used (9), which implies that ( ' )eA- and AtFf  commute. 
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Differentiation with respect to a continuous parameter a gives 

- d (a We"A*) = C'l,".i* 

d a  

and ( k  = 0,1 ,2 ,  . . . ) 

(19) 

In [ 121 we proved the Barker-Hausdorff lemma and its anticommutator analogue 

__ dk  ( I I e o A S  - = A: ( U e o A * =  a - k  (k+lIeoA,. 
d a  

B (20) e A ~  e*A = i l l e A =  

or equivalently 
e A ~  e-A = (11 A e - B  

- - ( l I e A + ~  e-2A 

by the differential equation method [3]. In fact, we see that the k = 1 case of (19) was 
used in the proof. If one takes the Baker-Hausdod lemma for granted, then we see 
that its anticommutator analogue follows directly from the k = 1 ,  lower-sign, case of 
(15 ) .  Anyway, we have more generally (see (19) and (20)) 

with k = 0, 1 ,2 , .  . . . 
If in (20) we change B + eB and then multiply from the right by eFA, we get 

eB esA (23) eA e B  = i I I e A ,  

the lower-sign case of this operator identity being well known [5]. 

namely 
From (21) and the well known identities involving repeated commutators [5,6] 

etc, we get immediately the corresponding repeated anticommutator expressions 

e-rA (27) 

(28) 

(29) 
respectively. As in the case of the anticommutator analogue of the Baker-Hausdorff 
lemma, the last three identities are more convenient for application whenever the 
operators in question are such that the repeated anticommutators are simpler to evaluate 
than the corresponding repeated commutators. 

( ( l l e A + ~  e - 2 A ) n  = (lIeA+Bn 

ill 

i l ) e A + $ , ~  e-2A = [ ( l l e A + ~  e-2A , ( 1 1  e A, ~ e - ~ ~ ] ,  

e - 2 c  = ( I )  e A, ( ( 1 )  e E+ De-2B)e-2A e 
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Finally, we mention that the Kubo identity [13]  follows from (19). Indeed, integrat- 
ing this equation with respect to cy, applying the result to an operator B and then 
multiplying by e-"A from the left, we get 

Now (20 ) ,  with A +  aA, leads to 

B e ~ a A  - e - a A  B=e-"" 1; __ 2' (2 , ea ,~ iag .  

The lower-sign case gives then the Kubo identity 

e-aA = e  - a A  1: $ ( 2 1 e a ' A _  B. (30 )  

From this derivation one can also see that there is no direct anticommutatpr analogue 
of this identity (writing e 

this case). 
To conclude, in this section, by treating the repeated commutators and anticommu- 

tators on equal footing, we obtained a unified treatment of some diverse operator 
identities, and additionally a number of new anticommutator analogues of identities 
involving repeated commutators (equations (20 ) - (23 )  and (27 ) - (29 ) ) .  These analogues 
will be more convenient for application whenever the repeated anticommutators in 
question are simpler to evaluate than the corresponding commutators (and especially 
in the case when the operators in question anticommute). 

( 2 )  ~ ' A - B  = a i f f -  ( l Iea 'A-~  = af f f -  ( l ) e a ' A + g  e-2a'A = 
(1) e - ' A +  ( f f - B )  e-2a'A and inserting back into (30 )  is about the best one can do in 

3. Certain applications 

In this section we present exact diagonalisation of two spin-1 Hamiltonians of physical 
interest in which the anticommutator analogue of the Baker-Hausdorff lemma (21 b ) ,  
is used to good advantage. 

Firstly, we consider the reduced Hamiltonian of an asymmetric-top molecule, in a 
given vibrational state and in the rotational state J = 1, including sextic centrifugal 
distortion terms [ 141 

H = a1 + p,J: + (J: - J:)( a2 + p&> + ( a2 + p2J:)(J: - J:) 

a , = X +  Y - ~ A J + ~ H J  ( 3 2 a )  

( 3 2 b )  

 CY^ a(X - Y )  -28J + 417, ( 3 2 ~ )  

P 2 = 2 r ] J K  - 8 K + T K .  ( 3 2 d )  

(31) 

with 

ZE - f(x + Y )  - 2 A j ~  + 4 H j ~  + 2HKJ - A K  + f f ~  

In (32 )  the coefficients are as follows: X ,  Y and Z are the effective principal rotational 
constants; Aj ,  A j K ,  A K ,  SJ slid f j K  are the quartic distortion coefficients; Hj,  HjK, HKj, 
HK, T J ,  qjK and vK are the sextic distortion coefficients. 
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The operators Ji(  i = 1,2 ,3)  satisfy the usual commutation relations 

[ J l ,  J m l -  = iE /mnJn  (33)  

valid for any J ,  and additionally 

J,JmJn +J,J,J/ = S,,J, + S,,J/ (34) 

valid for spin 1 only [15]. In the present context, a useful set of algebraic relations 
arises when one defines the related set Ki( i = 1 , 2 , 3 )  of Hermitian spin-1 operators, 
namely 

Kl* iK2= (J1*iJ2)2=Ji K3= J 3  (35 )  

J : =  1 -;(K:- K,)  J :  = 1 -:(K:+ K,) (36a) 

from which, conversely, 

J ,J2  = ;( K2 + i K3) J2J,  = (J1J2)' =;(Kz-iK3). (36b) 

Using (34) one may show that the Ki operators satisfy the following algebraic relations: 

[Kl, KmI+ = 28/mK: [K,, Km]-=2islm,K,. (37) 

K,Km = 61mK:+isI,nKn (38)  

These combine to give 

in striking analogy with the 2 x 2 Pauli spin matrix algebra. In particular, (38) implies 
that K: = K; = K : = J:,  K1 K2 = i K3 and similar. 

Expressing (31) in terms of the new operators, we find 

H = a 1  +2(a2  + P2)Kl + P,K:. 

U = exp(i4K2/2) (40) 

HI= UHU-' = a ,  +2(a2+P2)UK,  U - ' + P ,  UK:U-'. 

(39) 

In order to diagonalise this Hamiltonian, we define the unitary operator 

so that 

(41) 

Now, using the anticommutator analogue of the Baker-Hausdorff lemma (21 b ) ,  and 
anticommutation property (37), we obtain at once 

UK U - ' =  ( 1 )  exp(i4t2,+/2)  K,  exp( -i4K2) 

= K, exp( -i4K2) 

= K,[ 1 +(cos 4 - 1)K: - i sin 4K2] 

= cos 4 K l  +sin 4K3 ,  

Also, since K: commutes with K2,  one has UK:U-' = K:, so that (41) becomes 

H' = a ,  +2(a2  + pz)(cos 4K,  +sin 4K3) + p ,  K:. (43) 

The choice 4 = a12 achieves, then, diagonalisation in the representation in which the 
3 x 3 matrix J3 = diag( 1,0,  - 1 )  ( h  = 1 ) .  
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Secondly, we consider the interaction Hamiltonian for a spin-1 nucleus, in a 
particular energy level, which includes electric quadrupole and magnetic dipole interac- 
tions [16] 

Here, e is the charge, Q the size of the electric quadrupole moment and V is the 
electrostatic potential. The external electric field gradient tensor at the position of the 
nucleus is symmetric and traceless and may be chosen to be diagonal in principal axes 
[ 161, (qe/2) diag( 77 - 1, -7 - 1,2); the parameters q and T ]  specify the size and orienta- 
tion of the field gradient. Using this, and expressing J, in terms of K, operators, we 
obtain 

a 
HI = - (3  K: - 2 + gK1) - PK3 (45) 

77 
with 

a = e2qQ/4 p = eB/2m. (46) 
Using the same form of the unitary transformation (40), we get additionally (with the 
help of (21b) and (37) ,  and in complete analogy with (42)) 

(47) 
The transformed Hamiltonian HI = UHI U-' becomes 

U K ,  U-'  = ( I )  exp(i4k2,+/2)K3 exp( --i4K2) = cos 4K3 -sin 4 K l .  

a 
H f = - ( 3 K ~ - 2 ) + ( a c o s ~ + ~ s i n ~ ) K l + ( a s i n ~ - p c o s ~ ) K , .  

17 
(48) 

Choosing 4 = tan- ' ( -a /p) ,  we obtain the diagonal form 

a 
H i  = - ( 3  K - 2) * ( LY' + p2)I"K3 (49) 

77 
with the eigenvalues 

Thirdly, we briefly consider exact diagonalisation of the following general spin-1 

(51) 
Here a, P I ,  . . . , y are restricted so that H is Hermitian. The Hamiltonian of this form 
implies that the original Hamiltonain is a linear combination of the following operators: 
1, J 3 ,  J:, J:, J:, J 2 ,  JIJ2, J2Jl, and possibly higher products of the form J ,J2J3 ,  J3J2Jl 
etc. 

Hamiltonian: 

H = a + P i K l +  P2K2+ P3K3 + yK:.  

In this case one defines 

N=P,K2-P*K1 U = exp(idN/2).  (52) 

( 5 3 a )  
N Z n + l -  

One has ( n  = 1,2 , .  . . ) 
N2" = P 2 " K :  - P2"N 
f i7Kl  = -2"(p2/p2)N"" fiT:K2=2n(pi//32)Nn+l (53b)  
f i + K ,  = o f i - K :  = 0. (53c)  
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Here p = ( p : + p : ) ” 2 .  With the help of the anticommutator analogue of the Baker- 

I MendaS and P MilutinoviE 

Thus, the anticommutator analogue of the Baker-Hausdorff lemma provides an alterna- 
tive, sometimes more convenient and efficient way of performing similarity or unitary 
transformation. This is especially true when the operators in question (as is the case 
in the above examples) have the anticommutation property. 
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